- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Al_Hatailah, Hussain (1)
-
Nanni, Antonio (1)
-
Omar, Osama (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The alkali–silica reaction (ASR) is a critical concern for concrete durability, yet its assessment remains challenging and directly impacts mixture design decisions. This review shows that the inconsistencies are more prevalent in mitigation evaluations compared to aggregate reactivity assessments, mainly due to the chemical variations in supplementary cementitious materials (SCMs). A validated framework is suggested to determine the optimal SCM replacement levels for ASR mitigation based on extensive field data, offering direct guidance for mix design decisions involving potentially reactive aggregates. The combination of the accelerated mortar bar test (AMBT) and the miniature concrete prism test (MCPT) is shown to be a reliable alternative for the concrete prism test (CPT) in aggregate reactivity. Also, their extended versions, AMBT (28-day) and MCPT (84-day), can be applied for SCMs mitigation evaluation. Given the slower reactivity of SCMs compared to ordinary Portland cement (OPC), the importance of incorporating indirect test methods, such as the modified R3 test and bulk resistivity is underscored. In addition, emerging sustainability shifts further complicate ASR assessment, including the adoption of Portland limestone cement (PLC), the use of seawater in concrete, and the declining availability of fly ash (FA) and slag. These changes call for updated ASR testing specifications and increased research into natural pozzolans (NPs) as promising SCMs for future ASR mitigation.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
